Existence for perfect T(K1, k)-triple systems

نویسندگان

  • Yuanyuan Liu
  • Qingde Kang
  • Mingchao Li
چکیده

Let G be a subgraph of Kn. The graph obtained from G by replacing each edge with a 3-cycle whose third vertex is distinct from other vertices in the configuration is called a T (G)-triple. An edge-disjoint decomposition of 3Kn into copies of T (G) is called a T (G)-triple system of order n. If, in each copy of T (G) in a T (G)triple system, one edge is taken from each 3-cycle (chosen so that these edges form a copy of G) in such a way that the resulting copies of G form an edge-disjoint decomposition of Kn, then the T (G)triple system is said to be perfect. The set of positive integers n for which a perfect T (G)-triple system exists is called its spectrum. Earlier papers by authors including Billington, Lindner, Küçükçifçi and Rosa determined the spectra for cases where G is any subgraph of K4. In this paper, we will focus in star graph K1,k and discuss the existence for perfect T (K1,k)-triple system. Especially, for prime powers k, its spectra are completely determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect countably infinite Steiner triple systems

We use a free construction to prove the existence of perfect Steiner triple systems on a countably infinite point set. We use a specific countably infinite family of partial Steiner triple systems to start the construction, thus yielding 2א0 non-isomorphic perfect systems.

متن کامل

Existence and Asymptotic Expansion of Solutions to a Nonlinear Wave Equation with a Memory Condition at the Boundary

We study the initial-boundary value problem for the nonlinear wave equation utt − ∂ ∂x (μ(x, t)ux) +K|u|p−2u+ λ|ut|ut = f(x, t), u(0, t) = 0 −μ(1, t)ux(1, t) = Q(t), u(x, 0) = u0(x), ut(x, 0) = u1(x), where p ≥ 2, q ≥ 2, K,λ are given constants and u0, u1, f, μ are given functions. The unknown function u(x, t) and the unknown boundary value Q(t) satisfy the linear integral equation Q(t) = K1(t)...

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

Knots with g(E(K)) = 2 and g(E(K#K#K)) = 6 and Morimoto’s Conjecture

We show that there exist knots K ⊂ S with g(E(K)) = 2 and g(E(K#K#K)) = 6. Together with [5, Theorem 1.5], this proves existence of counterexamples to Morimoto’s Conjecture [10]. This is a special case of [6]. Let Ki (i = 1, 2) be knots in the 3-sphere S, and let K1#K2 be their connected sum. We use the notation t(·), E(·), and g(·) to denote tunnel number, exterior, and Heegaard genus respecti...

متن کامل

Knots with g(E(K)) = 2 and . . .

We show that there exist knots K ⊂ S with g(E(K)) = 2 and g(E(K#K#K)) = 6. Together with [5, Theorem 1.5], this proves existence of counterexamples to Morimoto’s Conjecture [10]. This is a special case of [6]. Let Ki (i = 1, 2) be knots in the 3-sphere S, and let K1#K2 be their connected sum. We use the notation t(·), E(·), and g(·) to denote tunnel number, exterior, and Heegaard genus respecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2012